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Short-time transition probability in phase space for the 
Boltzmann-Fokker-Planck equation and equilibrium 

Eldad Dagan and Gerald Horwitz 
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 

Received 29 June 1987 

Abstract. We introduce the short-time transition probability associated with the most 
general Boltzmann-Fokker-Planck equation in Cartesian coordinates, thereby extending 
Chandrasekhar's results. We exploit the covariant formulation of the short-time propagator 
for the Fokker-Planck equation as introduced by Graham and Deininghauss. The case of 
a locally isotropic velocity background distribution is investigated and the conditions 
for thermodynamic equilibrium are found. The results are a direct generalisation of 
Chandrasekhar's, with the covariant drift introduced by Graham replacing the ordinary 
drift in Chandrasekhar's simpler approach. 

1. Introduction 

In his pioneering work in the 1940s, Chandrasekhar was dealing with the dynamics 
of particles under the action of both an external field of force and Brownian stochastic 
forces [ 1,2]. He presented the transition probability to change the particle position in 
phase space by the amount (Au, Ar) with a short time, where U refers to the velocity 
and r to the spatial coordinate. This transition probability has the structure of a 
transition probability in velocity subspace at a given space point, multiplied by a delta 
function, corresponding to advance of the particle in space by its velocity times the 
time interval T. The stochastic behaviour shows itself through the transition probability 
in the velocity subspace. From such structure of the transition probability it is possible 
to derive a Boltzmann-Fokker-Planck equation ( BFPE). The transition probability was 
obtained in those works only for the restricted case of a diagonal diffusion matrix 
0"" = Q(u)6"", where U is the magnitude of the particle velocity. 

Chandrasekhar also analysed the conditions under which the Maxwell-Boltzmann 
distribution function is a static solution of the BFPE. For the diagonal diffusion matrix 
Q ( u ) S Y W ,  he found the relation K = p u Q ( u )  where K is the drift and p = l /kT 
Chandrasekhar was aware that his analysis was not the most general and that its 
generalisation was yet to be obtained. 

Onsager and Machlup [3] developed a path integral formulation for the solutions 
of the Fokker-Planck (FP) equation in the approximation of linear drift and a constant 
diagonal diffusion matrix. Since the middle of the 1970s much work [4-121 has been 
done to go beyond the case of linear drift and a constant, diagonal diffusion matrix. 
It is in this framework is that we have found the basic tools to complete Chandrasekhar's 
analysis. 

There are several ways of introducing the Green function for the FP equation and 
its explicit expression for short times (called the short-time propagator in modern 
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terminology). We have based our analysis on the covariant formulation of the short- 
time propagator of Deininghauss and Graham (DG) [ 6 ] .  The functional solution of 
Graham [4,5] is based on taking Q,,,, the inverse of the diffusion matrix Q"", as the 
metric tensor (g,,,,,). In parallel to the building of the covariant propagator, Graham 
formulated a covariant form of the Fokker-Planck equation based on the same metric. 
It is in this DG covariant framework that the general expression for the short-time 
transition probability in the velocity subspace is introduced. In 0 2, we then build up 
the transition probability for phase space in a way analogous to that of Chandrasekhar. 

In this work we also present a detailed treatment for the case of a locally isotropic 
velocity distribution function. Such a situation is relevant for the equilibrium Maxwell- 
Boltzmann distribution. We examine in detail the equilibrium conditions in the 
framework of the covariant short-time propagator (§ 4) and the covariant FP equation 
(0  5 )  and relate them to the non-covariant expressions; we show that the equilibrium 
conditions obtained by these various approaches in the velocity subspace are equivalent. 
It is also found in the framework of the covariant formalism that the equilibrium 
condition in Cartesian coordinates has the structure of a proportionality between Qli 
(the diffusion in the direction parallel to the particle motion) and the modulus of the 
covariant drift. This condition may be considered as a generalisation of Chandrasek- 
har's earlier work obtained by exploiting Graham's formalism to the case of a locally 
isotropic velocity subspace. The formalism is introduced for Cartesian velocity coordin- 
ates only. Its covariant nature and the connection with the alternative covariant 
formalism of Rosenbluth et al [13] are analysed by us in a separate pdper [14]. In 
0 6 we present a summary and a discussion, briefly examining alternative short-time 
propagators to the DG formalism which we have employed. 

2. The general short-time transition probability in phase space 

We shall consider a system of equal mass particles moving in six-dimensional phase 
space with Cartesian spatial coordinates r ' (  i = 1,2,3) and corresponding velocity coor- 
dinates U' = dr ' /dt ,  where t denotes the time [15]T. We assume that the forces acting 
on a particle may be separated into an external field part (including a self-consistent 
field) B ( r )  and a fluctuating part which depends on U. Consider a time interval T that 
is long compared with the fluctuating timescale, but short compared to appreciable 
changes in particle velocity. In  the interval T,  a particle at ( r ,  U) at time t undergoes 
changes Ar'  in position and A V '  in velocity given by 

hr' = V'T (1) 

where AFu' denotes the change in v' due to the fluctuating part of the forces. Assume 
that A F u i  is associated with a conditional probability distribution 

x(r, U, t ;  Ar, Au, T )  = 9 ( r ,  U ,  t ;  Au, T ) 6 ( A r  - U T )  (3) 

defined such that x ( r ,  U, t ;  Ar, Au, T )  is the probability that a particle at ( r ,  U) at time 
t will be found at ( r + A r ,  u + A u ) .  The six-dimensional phase space distribution 

t We follow closely the analysis found in [2, 161. 
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function f has to obey the equation: 

f ( t+r ,  r +  UT, U) = f ( t ,  r, u-Au)T(r,  U - A u ,  t ;  Au, r )  d(Au). (4) I 
Expanding f ( r  + UT, U, t + r ) ,  f ( t ,  r, U - Au) and \Ir( r, U -AD, t; AV, r )  in a Taylor series, 
we obtain 

a f  a f  ( a (Au ' )  f )  1 a ' ( (Au 'Ad) f )  
- + U ' - = -  +- 
a t  ax' a d  2 adad 

where the averages on the right-hand side of (5) are given by 

(Au') =1 1 \ Ir(r,  U, t ;  AV, T)Au' d(Au) ( 6 a )  

( A u ' A d )  =- " ( r ,  U, t ;  Au, T ) A u ' A ~  d(Au). ( 6 b )  

7 

T 'I 
While carrying out the expansion we have neglected terms of order greater than r and 
also moments of order three, like ( l / r )  S9Au'Au'Auk d(Ao) and higher. 

The specific structure of 9 is consistent with the neglect of those higher moments 
due to their being of order greater than one in r. However, we must remember that 
this basic neglect of higher-order moments must be anchored in physical reasoning. 
When the explicit form of 9 is introduced in 0 3, it is shown that the introduction of 
the external force does not affect the second moment as it appears in ( 6 b )  relative to 
the situation where only fluctuating forces are present [17]1. So (Av'Ad) may be 
replaced by ( A F u ' A F ~ )  which is defined to be the diffusion coefficient Q": 

Q" = ( A F u ' A F u ' ) = -  " ( r ,  U, t ;  Au, T)AFv'AFu' d(Au). 
7 'I ( 7 )  

It would also appear that (AV' )  is decomposed in the presence of a force B according 

(8) 

to the equation$ 

(AV')  = B' + K '  

where 

K '  =- 9 ( r ,  U, I ;  Au, r ) A F u '  d(Au) (9) 
7 'I 

represents the first moment, called the drift in the absence of a force. Using (7) and 
(8) and rearranging terms in (5) we get the Boltzmann-Fokker-Planck equation 

This equation is denoted the Boltzmann-Fokker-Planck equation, since the right-hand 
side of (10) gives the form of the Fokker-Planck scattering contribution to the collision 
term, while the left-hand side has the form of the comoving time derivative 

(11) Df/Dt = af/at + U' af/ax' + B, a f l a d  = (af/at),,,,,,i,,,. 

t See [2], p p  31-5. 
i This analysis is consistent with equation (2 )  and would appear to be also consistent within the framework 
of the short-time transition probability in 8 4. 
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We shall follow the formulation of Deininghauss and Graham [ 6 ]  to obtain the 
short-time transition probability for the velocity subspace in accordance with the 
general FP equation. 

Next we add a force term. Combining this with ( 3 )  leads to a short-time transition 
probability consistent with the general BFPE, equation ( l o ) ,  

( 1 2 )  
~- Df(r,  0) - ( K ” ( r ,  u)f(r, u ) ) + i  a’(Q””(r, v)f(r, 0)) 

Dt do”  2 a v p  a v ”  

From now on when the discussion is limited to the velocity subspace we will omit the 
r dependence. 

The conditional probability function in velocity space, P ( u ;  uo, t ) ,  for having 
velocity U at time t after the particle had initial velocity U,, satisfies the same FP equation 
as for f :  

Graham [ 4 ,  51 derived a covariant path integral representation of ( 1 3 ) .  His formalism 
is a covariant one based on choosing the inverse of the diffusion matrix Q”p(v)  as the 
metric tensor in the problem. We shall emphasise this role by introducing the notation 

QpUQvA = 8r. (14 )  g p u z  QpL. g @ ”  QP”  

This choice of the metric is possible due to the fact that the diffusion matrix Q’””(u) 
is a positive definite symmetric tensor. In  terms of these metrical concepts the path 
integral representation of ( 1 3 )  becomes 

P ( u ,  u0 ,  t )  = D p ( { u } )  exp 5 
(postpoint) with the Lagrangian 

1 1 a ( h ” d ‘ g )  R 
2 2 J g  a v ”  12 

L( U, U )  = -gpJ up - h ’” ) (U  ” - h ”1 - - ___ +- 

and the measure of the integration is 

7 

d v =  n d v ”  
Y: I 

where 

defines the covariant drift h“ and we also have the following definitions: 

d o )  = det(g,,) ( 1 9 ~ )  

R = g Y A g p K R , . P h K  (19b)  
where RUpAK is the Riemann curvature tensor. 
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We can immediately pass from the FP equation (13 )  for the conditional probability 
to the FP equation (12) for the distribution function. Given that 

t )  = 1 ~ ( u ,  on, t ) f ( u o )  duo (20) 

then by multiplying (13 )  with f (  uo) and integrating over 0 0 ,  we get (12) if we use the 
fact that the time derivative and the velocity derivatives at the postpoint U commute 
with the prepoint coordinate V g .  After introducing the general form of the propagator, 
DG derive the expression for the short-time propagator in which the various functions 
are evaluated at the postpoint U. 

For short times DG point out that the naive short-time propagator obtained by 
taking just one discrete interval out of (15 ) ,  

(21) 
must be corrected to be a consistent expression for a short-time propagator. The 
short-time propagator was then obtained by multiplying this rough approximation by 
a correction factor z (  U - uo,  U, T )  

(22) 
The correction function z has the form of a finite power series in q = U - u g ,  whose 
coefficients are determined such that the short-time propagator satisfies the Chapman- 
Kolmogorov equation: 

- 
A,(u, uo)  = 4 g ( ~ ) ( 2 , r r 7 ) - ~ ’ ~  exp{-d[ (u-  U o ) / T ,  U]} 

P(U, U o ,  T ) = A , ( v ,  uo)z(u-Uo,  U’, 7 ) .  

P(u, u o , 2 7 ) =  du,P(u,  U , ,  T ) P ( u ~ ,  U”, 7 ) .  (23) 1 
The condition, also known as the fixed point condition, means that if we multiply two 
consecutive short-time propagators and integrate over the intermediate point U, , we 
get the short-time propagator for the double time interval 27. So the final covariant 
explicit form of the short-time propagator in (22) is now: 

1 
1 + C , ~ ( U ) T ~ T ~  +; ( ~ o p y ( u ) ~ ~ ~ ~ ~ ~  + E ~ ~ ~ , ( ~ ) T ” T ~ T ~ T ’ )  

1 P Y A  .) +7 GapybE”(u)77U77 77 77 Vf77 
7 

1 4X3 exp[- h & v ( u ) ( T p I T  - h p ) ( v l ’ / T  - h ” )  

The various coefficients are given by 
C o p  =-‘-R 12 u p  - L (  2 a ( g . J ” ) l ~ U ’ I o p  

where R,, is the Ricci tensor, and 

Do,, = a{ag../au’L, 

E.,,., = +2{a2g../au’ av ’ -$g”pr : . r? } ,pya  

GoPysp - 

{ag../auj,,, = f(ag,,/auY +agoY/aup +agpy/auu) .  

- _L g. .I a v ‘ ag. .I a U ’  1 ap y6F  

The curly brackets denote complete symmetrisation, e.g. 
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The expression in equation (24) may also be derived in terms of a WKB approxima- 
tion of equation (15)  [6]. It has the form of a scalar density which consists of a scalar 
part S multiplied by J g .  When integrated over velocity we must multiply only du = 
du’ du2 du3, so that the integral element has the form of Sfi do, as it should have in 
curved space formalism. The time-dependent structure of the short-time propagator 
means that the FP equation (12) and the Chapman-Kolmogorov condition are satisfied 
up to order r. 

In equation (24) the short-time propagator has a complicated form. By passing to 
Riemannian normal coordinates [15] at the postpoint, a much simpler form of the 
propagator is obtained. Denoting by a prefactor * all quantities expressed in normal 
coordinates, the short-time propagator becomes 

P(u,*u,  ~ ) = ( 2 ~ ~ ) - ~ ’ ~ ~ [ 1 + * C ~ ~ ( u ) * ~ ~ * ~ ~ + .  . .] 

where 

*emp = -~{*g,.a*h”/au’},,-~*R,,. (27) 

We will now introduce a force term B ( r ) ,  which as we have noted can include an 
internal self-consistent force as well as an external force. In the presence of such a 
force, we must add the systematic change ( A u ) / T  due to that force into the drift term, 
and thus K ”  is replaced by K ” + B ”  and, in accordance with equations (2) and (8), 
we define 

c ” = h ” ( r ,  u ) + B ” ( r ) .  (28) 

To make this change consistent with the covariant nature of the velocity subspace 
transformations, B’(  r )  must transform like a contravariant vector. 

All the elements to construct the short-time transition probability for phase space 
have now been presented. In analogy with Chandrasekhar’s prescription of (3), we 
write the final expression for the short-time conditional probability: 

P ( r , u ; r o , u o , ~ ) = P , ( r o , u ;  u o , ~ ) 8 ( r - r o - u ~ )  (29) 

where P, is the conditional probability in the velocity subspace located at ro and where 
we have replaced the 9 notation appearing in (3) with the conditional transition 
probability of (24), where the relevant differentials Au, A r  are defined to be 

A u = v - u ~  (30a)  

A r = r - r o .  (306) 

The basic structure of Chandrasekhar’s transition probability is retained to the DG 

expression of (24) for the velocity subspace transition probability and with the inclusion 
of a force term in the drift through (26). The reconstruction of the FP equation out 
of (27) will be shown in detail in § 4. It must be noted that when making a transformation 
within the velocity subspace, the U term appearing in the delta function must retain 
its vectorial properties. This means that it has the same magnitude and direction 
relative to the non-curved spatial space r. Otherwise, the particles will reach a different 
place due to transformations in the velocity subspace, in contradiction with (1). 
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3. The structure of curved velocity space for a locally isotropic background 

In the last section the general formula for the short-time propagator in the velocity 
subspace was presented (equations (24)-(26)). Our main interest is in working out 
the details of the locally isotropic velocity with a view to analysing the conditions of 
equilibrium, in $0 4 and 5 .  

The situation is much simplified when we are dealing with the case of locally 
isotropic functions in velocity space. Working with locally Cartesian coordinates in 
velocity space we can diagonalise the diffusion matrix and its inverse. Let the U’ 
component of the velocity be in the direction of the velocity vector, i.e. U’ and u3 are 
zero. Defining 

Oil= Q”(0)  ( 3 1 0 )  

Q, = Q”( U) = Q”( U) (31b)  

and 

while off-diagonal components of Q” vanish, we observe that 

K ‘  = T ( u ) ~ ’ ’ .  (32) 

g = det(g,,) (33 )  

0 = det( Q”) (34 )  

While introducing our notation g, = Q, and hence 

we also define the quantity 0 for convenient comparison with other work: 

whence 0 = g-’ = QllQ:. In these equations all the quantities appear to be functions 
of the magnitude of the velocity alone. The general form of the diffusion matrix is 
obtained by rotating using Euler angles (figure 1) from the direction parallel to the 

Figure 1. The transformation of the velocity coordinates U ’  into U””, in which U’”’ is parallel 
to the particle velocity, bq means of Euler angles (U, 0, $). We first rotate U ’  by p around 
the axis u 3 .  Then we rotate u3’ by 8 = 90” around U” to bring u3’ into the plane formed 
by U’, u 2 .  Finally we rotate U”’ by $ around 8’ to achieve overlapping between U’”’ and 
the velocity U. The dependence of p and $ on the velocity components U ’  are given in (35). 
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velocity to an arbitrary direction [17]. Let R(cp, 8, IC,) be the transformation which 
rotates from a general direction to the direction parallel to the velocity which we have 
denoted U ’ ;  the inverse transformation is R - ’ .  The Euler angles (9, 8, IL) are given by 

U 2  U 1  

[ ( + ( U2)2]1’2  
cos cp = 

[ ( + ( U2)2]1’2 
sin 9 = 

U 3  [ ( + ( U2)*]”2 
cos * = 

[( U ’ ) Z +  ( U 2 ) 2 +  ( u3)2]1’2 [ ( U 1 ) 2  + ( U2)2  + ( U3)2]1’2’ 
sin $ = 

The general expressions for the transport coefficients are 

and 

where e.., 6“ denote the diffusion tensor in the diagonal system. In view of the high 
symmetry, the calculation of the connections leads to only three distinct Christoff el 
symbols in the diagonal system, 

where the prime denotes a derivative with respect to U. From these relations we are 
able to calculate the scalar curvature R, the covariant divergence iyy and the other 
functions appearing in the short-time propagator. 

Since the short-time propagator is much simplified when expressed in normal 
coordinates at the postpoint up = U, we shall also describe briefly the details of this 
transformation. The prepoint uo is now referred to as normal coordinate U,”+ *U”. The 
general formula for transforming to normal coordinates which are flat at the postpoint 
is given by? 

(40) 

If we choose Cartesian coordinates in which U’ is directed parallel to the postpoint 
velocity U = up, we get the following form of (4) for the case of a locally isotropic 
background: 

U;- U; = U; - *U;+$;,( u,)(*u;  - v ; ) ( * u ;  - U;). 

U l - U ’ -  - up 1 - * U ’  +;r : , ( * U ’  - U ; ) 2  +fr:2(*U2 - +4r:3(*U3 - U;)2 

+(*U’ - U ; ) [ T ; , ( * U ’ -  U;) + C 3 ( * u 3  - U;)] 
0; = * U 2  (41) 

U: = *U’. 

t See, for example [ 161, pp 19,20. 
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The derivatives of the old coordinates uo relative to the new ones *U are given by 

av:/a*vl= 1 -r:I*771-r:I(*772+*773) = a  

a v i / a * v ‘  = 6 f  avA/a*v‘ = 6;’ 

where *q = U, - *U. 

one another according to the following linear relations: 
According to (42), the differentials in the two coordinate systems uo, *U relate to 

(43) 

At the postpoint U,, the differential *q vanishes, so that at that point dv,Y/d*vCL = 
a*v” /av , ”=6 ; .  We thus conclude that we can substitute in the expression for the 
propagator in normal coordinates, equation (26), the values of the various original 
functions calculated at the point U,. 

We also need the Jacobian of this transformation for finding the new distribution 
function *f(r, *U) at the prepoint. From (43) we obtain 

(44) J = lauo/a* 0 1  = au; /a*v ’  = 1 + r t 77 + r t2*77*  + r :,* $. 
Using the conservation of the number of particles in a given infinitesimal volume 
elementf(u,) duo = *f(*u) d*u = f ( * u ) J ( * u )  d*u, we find the new distribution function 
*f(*u) to be 

*f( * U )  = f( * U) J ( * U). (45) 

4. The condition for equilibrium using the short-time transition probability 

We will now use the results of $ 8  2 and 3 to obtain the equilibrium condition under 
which the equilibrium distribution preserves its functional form under the operation 
of the short-time transition probability. According to (29), using normal coordinates, 
the short-time transition probability in this section will have the following form: 

(46) 

The transformation to normal coordinates at the postpoint does not affect the final 
velocity U = U,, so that the spatial transition probability is not affected. 

If the distribution function *f(ro, U,) at the initial time is given, it would take the 
form *f(r, U, T) at a later short time T according to the following equation: 

*f(r, U, T) = [[ *P,(ro, U ;  *U,, T)6(r- ro- uT)f(ro*, uo) dr, d*uo. (47) 

* P(r, U ;  ro, uor T )  = P,(ro, U ;  *uo, T)8( r - ro -u~) .  

We shall first carry out the spatial integration, so that we get 

*f(r ,u , r )=[  *P,(r-uT, u;*uO,T)*f(r-u~,*uO)d*uO.  
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The explicit form of the velocity subspace short-time propagator takes the form (see 
(26)-(28)) 
*P,(r- UT, U ;  *uo, T )  

= [ I + * C , ~ ( ~ - U T ,  U ) * T “ * T ~ + .  . . ] [ ( 2 ~ ~ ) - ~ g ( r - t ) ~ ) ] ” *  

x exp[(-T*g,,(r- UT, u)(*vY/.r-*iY(r  - UT, U)) 

x ( * T * / T - j i p ( r -  UT, u))-+T(d*jiv(r-uT, u)/au*”+i*R(r- UT, U))]. 
(49) 

We shall now change the variable of integration into *t = * ~ / J T  = (U - * u ~ ) / J T .  
We will also expand the exponent in the propagator to order T and also expand the 
dependence on the spatial coordinates to the same order. After these operations have 
been carried out, (48) takes the form 

We shall now substitute the equilibrium Maxwell-Boltzmann distribution function 
in normal coordinates. In Cartesian coordinates in velocity space with U ’  taken parallel 
to the velocity direction, the phase space distribution takes the form 

LJr, 0) = N exp[-fpv2-pdr)1 (51) 
where N is a normalisation constant and q ( r )  is the external potential (including any 
self-consistent potential). 

In normal coordinates (cf (45)) the equilibrium phase space distribution function 
is expressed as follows at the prepoint (r, *uo): 

*f(r, *DO) =fe,(r, *uo)J(r, * u ) N  exp(-Bcp(r)) 
x exp{-jp[ U’ - * T I  -$;‘(r, u ) ( * T ’ ) ~  --$i2(r, u)(*T*)* 
-fG3(r,  u ) ( * ~ ~ ) ~ - G d r ,  V ) * T ’  * ~ ~ - r h ( r ,  U )  * T  I *  T 3 2  1 

- fp  ( (* 2)2  + (* )*I 3 [ 1 + r ; ( r, U )  * + r : ( r, U )* T * + r : * ’1 (52) 
where *q = u - * u o .  Putting this expression in (50), replacing *q by * f  as a variable, 
and expanding the remaining spatial dependence around r and then carrying out the 
integrations, we obtain 

*f( r, U, 7 )  = N eXp[-fp( U’)* - p q (  r)][ 1 + TFA + TFB + o( T*)] (53) 
where 

FA = h ’ ( p u l +  r ; + +p2(  ul)2g11 - f p  ( g1I + g 2 2  + g33) 

+pt’ lg lT; l  + ; p ~ ’ ( g ~ l r ; ~  + g22r:2+ g33r:l) -a*h”/a*u” -I* 6 R (54a) 

FB = B ’ p u l +  (acp/ar)pu. (54b) 

and 

The equilibrium condition is the vanishing of the term linear in T. 
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The local force B(r) is derived from the potential: B(r)  = -acp/ar, from which we 
see that the term FB vanishes. The two terms of FB correspond to the terms B (  r)af/ao + 
vaf/ar in the BFPE. We expect equilibrium to be conserved also in the absence of 
collisions. 

It is also considered that the addition of the B(r)  to the drift and the introduction 
of 6(r -  r,- U T )  into the short-time transition probability lead exactly to these terms 
in the Boltzmann equation, although the more general propagator in velocity subspace 
has been introduced. Thus we conclude that extending the propagator from velocity 
to phase space in a way analogous to Chandrasekhar is found to be justified. 

We also require that the term labelled F A  in (54a)  to vanish as well. The vanishing 
of this term is peculiar to the covariant formulation of DG. Actually, it is also the 
covariant condition for retaining equilibrium in the reduced velocity subspace. In the 
next section, it will be shown that the condition F A  = 0 is equivalent to the analogous 
condition in the framework of the covariant FP equation. It should also be clarified 
that the condition FA = 0 does not contain a meaningless relation between quantities 
of different types but instead relates the values of some specific components calculated 
at the postpoint with a specific frame of reference. 

5. The covariant FP equation and the equilibrium condition 

Using QvF as the metric g,,, Graham also formulated a covariant FP equation [SI. In 
this section we shall briefly analyse the conditions for equilibrium in the framework 
of this formalism. We show that the condition that we obtain is equivalent to the one 
we determined in the previous section. We will also demonstrate the equivalence with 
the condi on for equilibrium obtained using a non-covariant equation. We then obtain 
a straightforward generalisation of Chandrasekhar’s relation showing a proportionality 
even in the general case between the diffusion and the covariant drift for the case of 
equilibrium. 

For a given FP equation 

one can formulate the covariant FP equation on the basis of a covariant length given by 

(56) 
Graham has shown that the diffusion matrix Q ” @ ( u )  transforms like a tensor under 
coordinate transformations with g ,  as the metric, but the drift K ” ( u )  does not 
transform like a vector and must be replaced by a covariant drift h”  defined by 

ds2 = g,, dv” dv,. 

With Graham’s choice of metric, the distribution function and transition probability 
are scalar densities rather than scalars and hence we can write them in the form 

f = V @  ( 5 8 )  
where S is the corresponding scalar distribution function. With the definition of a 
covariant volume element: 

we observe that f do = S dR, which transforms like a scalar under coordinate transfor- 
mations to conserve the number of particles in a certain infinitesimal volume element. 

dR = &du (59 )  
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If in ( 5 5 )  K ”  is expressed in terms of h ”  and the derivatives with respect to U are 
transformed into covariant ones, we obtain the covariant FP equation: 

S =  - [ h ” S - & ” r S , , ] , . s  -F”  , U  (60) 

where F” is the covariant probability current. 
Let us now proceed to determine the conditions for equilibrium. The covariant 

distribution function is conserved when the divergence of the probability current 
vanishes: 

S ~ - F ” , , , ~ O .  (61) 

For stationary solutions, non-zero probability current is possible although the covariant 
divergence must vanish; however, for the static solutions corresponding to thermo- 
dynamic equilibrium, we expect the probability current F” to vanish everywhere. Since 
S is a scalar, S,@ = S,, and the condition for the vanishing of F” can be written in the 
form 

(62) F ” = h ” S - !  2g ”P (S)&=o. 

After dividing by St,  we obtain the equilibrium condition: 

(63) 

Substituting in (60) the Maxwell distribution function f (  u )  = N exp( - p u 2 ) ,  after some 
lengthy but straightforward algebra, using the specific properties given § 3, we find 
identical conditions to those we obtained in the last section (the vanishing of FA defined 
in (Ma)) :  

h ‘ ( p u ’  + r: 

h’’ -I  ,g V P  (In S),* = 0. 

+ $?,( ul) ’g”  -$( g” + g2’ + g 3 3 )  

+ p ~ ~ g ’ ’ r ;  + p ~ ’ (  g’ ’r; I + gZ2r:, + g3T:,) - h”,, - i ~  = 0. (64) 

We thus find identical conditions for equilibrium both by the use of the short-time 
propagator in normal coordinates and by the covariant FP equation. It is also true 
that the covariant condition (63) is consistent with the non-covariant condition (cf the 
appendix) 

where F“ is the non-covariant probability current. After dividing by f we get the relation 

a l n  f 
- 0. : Q L F  T -  K ” - -  1 aQ”” 

2 au”  

We shall now evaluate (63) for the case of a locally isotropic background in the 
locally Cartesian coordinate system. Using the various relations given in § 3, we obtain 
the following specific condition for equilibrium: 

F ”  = [ h (  U )  -+ (a  In S / ~ u ) Q i i ( u ) ] ( u ” / u ) S  = O  (66) 

h ” ( u ) =  h ( u ) u ” / u  (67a) 

where 

+ For the case of a Maxwellian distribution function, it happens that division by S is legitimate, since i t  is 
never zero except for infinite velocity. 
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then 

h ( u )  -4(a(In S)/au)Qi = 0. ( 6 7 c )  

We get the result that, for the most general FP equation, equilibrium in locally 
isotropic media requires that a direct proportionality relation exists between the scalar 
drift h(  U) and the diffusion parallel to the particle motion. The factor of proportionality 
is fa In( S ) / a u .  The relation in ( 6 7 )  can be considered as a generalisation of Chandrasek- 
har’s condition for equilibrium?. Chandrasekhar’s relation was limited to the case 
where Q ” w ( u )  = Q ( u ) 6 @ ” ’ ,  and the relation which he obtained was as follows: 

7 7 ( u ) + P u Q ( u ) = O  v ( u )  -(a(lnf)/au)Qll = O  ( 6 8 )  

(where ~ ( u )  is negative) while in the non-covariant formulation of the FP equation 
the condition for the vanishing of the regular drift F’’ ( 6 5 a )  takes the form: 

Due to the presence of the middle term, a simple balance between the drift and the 
diffusion parallel to the particle velocity Q l l  does not exist. It is to be emphasised that 
it is only through the introduction of the covariant drift h ”, which combines the standard 
drift K ”  together with the first derivatives of QUw,  that one is able to obtain such a 
generalisation of Chandrasekhar’s relation$. 

6. Summary and discussion 

In this paper we have extended Chandrasekhar’s work by introducing a short-time 
transition probability in phase space consistent with the most general BFPE in Cartesian 
coordinates. We have also studied in detail the case of a locally isotropic background 
and formulated conditions for equilibrium in a form which extends Chandrasekhar’s 
equilibrium relation which was obtained for more restrictive conditions. 

In the expression for the short-time transition probability, we have introduced the 
short-time propagator of DG in the velocity subspace. However, it must be emphasised 
that the path integral solution together with its discretisation for short times is not 
uniquely defined in  the literature [lo-121. Proceeding as in 5 4, it is easily shown that 
all of the suggested propagators reproduce the FP equation up  to order 7. 

The question of uniqueness is beyond the scope of this paper. However, we feel 
that a few comments are needed for completeness. One aspect relating to the discretisa- 
tion procedure involves the choice of an arbitrary point between the prepoint U,, and 
the postpoint U at which the various functions are evaluated [ 8 ] .  Even when the same 
selection is made, there remain distinct choices for the short-time propagator. Let us 

+See  [ l ] ,  equation (12), p 2 5 3 .  
f Chandrasekhar’s relation also holds exactly for the case of small-angle two-body scattering due to the 
inverse square law. I t  is satisfied there due to the special relation between the drift and the first derivatives 
of the diffusion tensor unique to that case !see [13]) .  
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consider Wissel’s discretisation [ 101, when evaluated at the postpoint for the short-time 
propagator: 

P(u; u0, T )  = [ ( 2 ~ ) ~ 0 (  exp{-t.Qy,(u)[-Q”A,A( U )  + K ” (  U )  - ( U ”  - U:)/T] 

X [ - Q ”+, ( ) + K ’ ( U - ( U’ - ~ 0 ”  / T I  - Q ””, vp ( U -t K ”, ( ) I (70) 

where the commas denote ordinary derivatives. Comparing this formula with the DG 
short-time propagator in (24), we can see the differences. Wissel’s form is not a 
manifestly covariant formula. More important is the functional form by which the 
two propagators differ; while Wissel’s formula is a quadratic form in q = U - uo in the 
exponent, that of DG is multiplied by a polynomial of degree six. That means that 
these propagators assign different transition probabilities in velocity space while still 
reproducing the same first two averaged moments of the FP equation. 

The results obtained in this paper were expressed for a specific choice of coordinates. 
This limitation is removed in another paper [ 141; in that paper we introduce a covariant 
framework for transforming the BFPE, presenting its short-time transition probability 
in the new set of coordinates. There we also compare Graham’s covariant formulation 
with that of Rosenbluth et a1 [13], based on the use of the ordinary metric in velocity 
subspace. Both formulations are shown to yield the same BFPE equation in the new 
coordinate frame, but Graham’s approach is more appropriate for presenting the 
short-time transition probability for the BFPE. 

Our extension of the short-time transition probability, as described in the present 
work, can also be used as a basis for numerical calculation instead of the approaches 
based on the formulation of Rosenbluth et a1 which have been extensively exploitedt. 
Building a suitable grid and calculating the transition probabilities between its elements 
serves to follow the evolution of a test particle distribution function by iterative 
multiplication of short-time transition probabilities$. That procedure can replace the 
finite difference methods of solving the partial differential BFPE. Alternatively one 
could define a finite interval transition probability and solve the evolution in that form. 
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Appendix. Equivalence of the covariant and non-covariant equilibrium conditions 

Using (18) we can write for h ” :  

t Ipser has introduced such a calculation in [16]. 
8 Explicit numerical calculations based on the one-dimensional short-time propagator have been carried 
out by Wehner and Wolfer [18]. 
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From ( 5 8 )  we get for (In S ) , p :  

(In s ) , ~  = ln(jQ1’2),p = (In j ) ,p  +(In Q1’2),p. (A2) 

Substituting ( A l )  and (A2) into (63) leads to (65a)  which proves the equivalence of 
the two equilibrium conditions: 

References 

[l]  Chandrasekhar S 1960 Principles of Stellar Dynamics (New York: Dover) 
[2] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1-89 
[3] Onsager L and Machlup S 1953 Phys. Rev. 91 1505-15 
[4] Graham R 1977 Z. Phys. B 26 281-90 
[5] Graham R 1977 Z. Phys. B 26 397-405 
[6] Deininghauss R and Graham R 1979 2. Phys. B 34 21 1-9 
[7] Horstemke W and Bach A 1975 Z. Phys. B 22 189-92 
[8] Haken H 1976 2. Phys. B 24 321-6 
[9] Dekker H 1976 Physica 85A 363-73; 1979 Phys. Rev. A 19 2102-11; 1981 Phys. Rev. A 24 3182-7 

[ lo]  Wissel C 1979 2. Phys. B 35 185-91 
[ l l ]  Hunt L C and Ross J 1981 J. Chem. Phys. 75 976-84 
[12] Morita T and Hara H 1984 Physica l25A 607-18 
[13] Rosenbluth M N, MacDoiiald W M and Judd D L 1957 Phys. Rev. 107 16 
[14] Horwitz G and Dagan E 1988 J. Phys. A: Mafh. Gen. 21 1017-28 
[ 151 Papapetrou A 1974 Lectures on General Relativify (Dordrecht: Reidel) 
[ 161 Ipser J R 1977 Asfrophys. J. 218 846-56 
[ 171 Goldstein H 1971 Classical Mechanics (Reading, MA: Addison-Wesley) 
[18] Wehner M F and Wolfer W G 1983 Phys. Rev. A 27 2663-70, 28 3003-11 


